

Centro de Tecnologia - UFAL EPET060 –Engenharia de reservatórios II

Lista de exercícios

Estimativa de reservas e distribuição inicial de fluidos

Prof. Jonathan C. Teixeira

1: Considere uma seção transversal para um reservatório homogêneo com WOC e GOC definidos e uma pressão de óleo de referência medida em uma profundidade de referência: (a) Esboce curvas de pressão capilar típicas usadas para cálculos de equilíbrio de saturações iniciais. Rotule os pontos importantes. (b) Esboce as pressões iniciais típicas de água, óleo e gás em função da profundidade. Rotule os pontos importantes usados e explique brevemente o procedimento usado. (c) Esboce as correspondentes distribuições iniciais de saturação de água, óleo e gás determinadas através de cálculos de equilíbrio e curvas de pressão capilar. Rotule pontos importantes e explique brevemente o procedimento usado para tal. (d) Explique os conceitos de contato WOC e superfície livre, usando um esboço.

2: Foi realizado um levantamento de pressão em um poço que penetra na zona de gás em um reservatório da ENI. O resultado do teste 1 registrou uma pressão de 4450 psia a 9825 pés com gradiente de fluido de 0,35 psi/ft, enquanto o teste 2 a 9500 pés registrou uma pressão de 4180 psia com gradiente de fluido de 0,11 psi/ft. Calcule: (a) Estime os contatos de fluido (GOC e OWC) no reservatório. (b) A espessura da coluna de óleo. (c) As pressões em GOC e OWC, respectivamente. <u>Dica:</u> Considere o gradiente da água igual a 0,45 psi/ft e pressão na superfície 14,69 psi.

3: O mapa de contorno de um potencial prospecto forneceu os seguintes dados:

Profundidade TVD (ft)	Área (acres)	porosidade	Sw
2910	32	0.21	0.30
2920	40	0.23	0.31
2930	43	0.21	0.26
2940	49	0.20	0.28
2950	67	0.19	0.25
2960	75	0.16	0.31
2970 (OWC)	90	0.15	0.30

Se o fator volume-formação é estimado em 1.25 bbl/STB, e espera-se que o reservatório produza sob o mecanismo de gás em solução (fator de recuperação estimado, mín.: 9.5 %, médio: 21.3 % e máx.: 46 %). Calcule (a) a estimativa da reserva provável, em STB. (b) e o Original Oil in Place (OOIP), em STB.

4: Durante o processo exploratório um poço encontrou uma sequência de arenitos, onde as pressões obtidas pelo RFT são mostradas a seguir:

Fluidos encontrados	profundidade (ftss)	Pressão (psia)
Água	6345	3350.1
Óleo	6398	3199.1
Água	6423	3184.6
Água	6732	3221.1

O óleo tem °API de 45. Com base nos dados, pergunta-se: (a) Usando os 2 aquífros mais próximos ao reservatório de óleo, encontre a equação da água. A região do reservatório está anormalmente pressurizada? (b) Encontre a equação da água. (c) Estime o contato óleo-água. (d) O aquífero mais profundo está hidraulicamente em contato com os outros dois mais rasos? Por que e Por que não?

5: A extensão de área de um reservatório conforme determinado com dados sísmicos é de 1.500 acres. A partir dos registros, as seguintes propriedades do reservatório foram determinadas:

ϕ	espessura [ft]	Sw
0,28	4	0,28
0,32	7	0,40
0,18	3	0,31
0,20	10	0,27

(a) Determine o volume poroso do reservatório. (b) Determine o volume de óleo inplace inicial. Considere Bo = 1,34 bbl/STB.

6: O resultado de um teste de RFT realizado em um poço de avaliação em um campo localizado na costa do Pará é apresentado na tabela abaixo. A saturação de água conata é de 0,22

profundudade TVD [ft]	p [psia]	Sw
13130	6425,2	0,25
13308	6486,6	0,85
13448	6546,5	1
13530	6583,6	1

Centro de Tecnologia - UFAL EPET060 –Engenharia de reservatórios II

- 1. Determine os tipos de hidrocarbonetos presentes (óleo ou gás).
- 2. Encontre os contatos de fluido.
- 3. Em que profundidade teremos uma saturação de água igual a 0,5? <u>Dica:</u> Considere a correlação de Brooks-Corey para a pressão capilar
- 7: Durante o processo exploratório, um poço encontrou uma sequência de turbitidos, onde foram realizados testes em laboratório e determinado a função J de Leverett:

$$J = 0.1 + 1.2 \times e^{-6 \times (S_W - 0.15)}$$

E a curva de pressão capilar, dada pelos dados na tabela abaixo:

$S_w[-]$	$P_{cow}[psi]$
0,2	40
0,3	25
0,4	15
0,5	9
0,6	6
0,7	4
0,8	3
1,0	2

Além disso, o óleo apresenta um "API de 45 e a temperatura do reservatório é de 240"F. A densidade da água conata foi de 65 lbm/ft³. A tensão interfacial da água/óleo e o ângulo de molhabilidade são: 72 dyna/cm e θ =45°, respectivamente. O contato água-óleo encontrado através de análise prévia de RFT/DST foi a uma profundidade de -4486 ft msl. Após os testes RFT e DST, ainda não interpretados, foram coletados e dispostos a variação da permeabilidade e porosidade da formação, apresentados na Tabela abaixo.

Profundidade (ftss msl)	ϕ [-]	k[mD]
-4375 à -4400	0,1	35
-4400 à -4415	0,15	145
-4415 à -4425	0,12	68
-4425 à -4450	0,18	388
-4450 à -4465	0,08	10
-4465 à -4480	0,14	112
-4480 à -4550	0,08	10

Determine (a) distribuição da saturação com a profundidade, (b) quantos pés o nível de água livre (FWL) está doOWC.